149 research outputs found

    Tevatron accelerator physics and operation highlights

    Full text link
    The performance of the Tevatron collider demonstrated continuous growth over the course of Run II, with the peak luminosity reaching 4\times1032 cm-2 s-1, and the weekly integration rate exceeding 70 pb-1. This report presents a review of the most important advances that contributed to this performance improvement, including beam dynamics modeling, precision optics measurements and stability control, implementation of collimation during low-beta squeeze. Algorithms employed for optimization of the luminosity integration are presented and the lessons learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects.Comment: 4 pp. Particle Accelerator, 24th Conference (PAC'11) 28 Mar - 1 Apr 2011: New York, US

    Electron Lens as Beam-Beam Wire Compensator in HL-LHC

    Full text link
    Current wires are considered for compensation of long-range beam-beam interactions for the High Luminosity upgrade (HL-LHC) of the Large Hadron Collider at CERN. In this note, we demonstrate the advantage of using Electron Lens for this purpose instead of a conventional current-bearing wire

    Detection of coherent beam-beam modes with digitized beam position monitor signals

    Full text link
    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of 1.6×1051.6\times 10^{-5} in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.Comment: 7 pages, 4 figures. Submitted to the Proceedings of the ICFA Mini-Workshop on Beam-beam Effects in Hadron Colliders (BB2013), Geneva, Switzerland, 18-22 March 201

    Stability of non-linear integrable accelerator

    Full text link
    The stability of non-linear Integrable Optics Test Accelerator (IOTA) model was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.Comment: 10 p

    Simulation of Beam-Beam Effects and Tevatron Experience

    Full text link
    Effects of electromagnetic interactions of colliding bunches in the Tevatron had a variety of manifestations in beam dynamics presenting vast opportunities for development of simulation models and tools. In this paper the computer code for simulation of weak-strong beam-beam effects in hadron colliders is described. We report the collider operational experience relevant to beam-beam interactions, explain major effects limiting the collider performance and compare results of observations and measurements with simulations.Comment: 23 pages, 17 figure
    corecore